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ABSTRACT

Global climate models (GCMs) have been found to share the common too-frequent bias in the warm rain

formation process. In this study, five different autoconversion schemes are incorporated into a singleGCM, to

systematically evaluate the warm rain formation processes in comparison with satellite observations and

investigate their effects on the aerosol indirect effect (AIE). It is found that some schemes generate warm rain

less efficiently under polluted conditions in the manner closer to satellite observations, while the others

generate warm rain too frequently. Large differences inAIE are found among these schemes. It is remarkable

that the schemes with more observation-like warm rain formation processes exhibit larger AIEs that far

exceed the uncertainty range reported in IPCCAR5, to an extent that can cancel much of the warming trend

in the past century, whereas schemes with too-frequent rain formations yield AIEs that are well bounded by

the reported range. The power-law dependence of the autoconversion rate on the cloud droplet number

concentration b is found to affect substantially the susceptibility of rain formation to aerosols: the more

negative b is, the more difficult it is for rain to be triggered in polluted clouds, leading to larger AIE through

substantial contributions from the wet scavenging feedback. The appropriate use of a droplet size threshold

can mitigate the effect of a less negative b. The role of the warm rain formation process on AIE in this

particular model has broad implications for others that share the too-frequent rain-formation bias.

1. Introduction

The aerosol indirect effect (AIE) is of great im-

portance in regulating the global energy budget. It is

generally perceived that an increase in atmospheric

cloud-active aerosols, such as anthropogenically emitted

sulfate aerosols, acts to increase the numbers and de-

crease the sizes of cloud droplets for a given cloud water

amount, making the clouds more reflective to shortwave

radiation (Twomey 1977); this is known as the ‘‘albedo

effect.’’ On the other hand, the reduction in cloud par-

ticle sizes can inhibit the formation of precipitation due

to the less efficient collision and coalescence of cloud

droplets, so as to influence the lifetime and cover of

clouds (Albrecht 1989; Kaufman and Koren 2006),

known as the ‘‘lifetime effect.’’ While some intrinsic

microphysical or macrophysical mechanisms can buffer

(i.e., mitigate) the albedo and lifetime effects (Stevens

and Feingold 2009; Small et al. 2009), it is generally ac-

cepted that the net effect of AIE is to cool the surface

temperature and partially offset greenhouse gas warm-

ing (Boucher et al. 2013).

Given the importance of AIE to Earth’s energy bud-

get and the large anthropogenic contribution to the at-

mospheric aerosols in the industrial era, it has been a

major interest of many studies to estimate the AIE from

the preindustrial (PI) to the present-day (PD) period
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(Knutti et al. 2002; Wilcox et al. 2013; Stevens 2015;

Zhang et al. 2016). However, significant inconsistency

exists among theAIE estimates of global climatemodels

(GCMs) (Boucher et al. 2013), indicating a substantial

discrepancy in the sensitivity of Earth’s energy budget to

aerosol perturbations among GCMs. This has been

found to be a dominant factor that led to the diversity in

the simulated surface mean temperature in the CMIP5

models (Rotstayn et al. 2015), and also a major source of

uncertainties for the projections of climate in the near

decades (Collins et al. 2013). For this reason, increasing

studies have been endeavoring to disentangle the com-

plexity of the multiple processes operating in AIE

from the observational sector (Rosenfeld et al. 2014;

Malavelle et al. 2017; Ma et al. 2018), or to constrain and

improve the representations of these processes in GCMs

(Wang et al. 2012; Fan et al. 2013; Donner et al. 2016;

Rothenberg et al. 2018; Sullivan et al. 2018).

One particular process that is closely associated with

AIE is the production of precipitation, which both de-

pletes cloud water and also deposits aerosols. Previous

studies have demonstrated that modifications to the

representation of precipitation could give rise to large

variations in simulated AIE (e.g., Rotstayn 2000; Golaz

et al. 2011). For instance, the simulated AIE in the

GFDL CM3 model was found to be linearly related to

the threshold of droplet effective radius Re for the onset

of precipitation (Golaz et al. 2011); in some other

models, the shifting from the diagnostic to the prog-

nostic representation of precipitation substantially re-

duced the AIE due to the shift of the emphasis of rain

production from the autoconversion process to the ac-

cretion process for the prognostic approach (Posselt and

Lohmann 2009; Michibata et al. 2019). These studies

suggest that no consensus about the treatment of pre-

cipitation has been reached among GCMs and that a

promising approach to constrain AIE for GCMs is

to reconcile the modeled precipitation process with

observations.

Despite the fact that the global-mean surface pre-

cipitation amounts simulated by state-of-the-art GCMs

are generally close to observations since they are largely

controlled by energy budgets constraints (Suzuki et al.

2017), a number of them have been found to generate

precipitation too frequently and too lightly (Stephens

et al. 2010; Hill et al. 2015; Jing et al. 2017). Process-level

evaluations of the precipitation formation process in

such models revealed that they commonly initiate pre-

cipitation, especially warm rain (i.e., rain in warm-

topped clouds), in clouds with both cloud water

amount and cloud droplet sizes much smaller than oc-

curred in the observations (Suzuki et al. 2015; Jing et al.

2017). That is, warm rain formation in suchmodels starts

too easily when cloud microphysical properties cannot

sustain such a process in reality. This common defect

among some GCMs has a great impact on the simulated

AIE as was illustrated by studies with varying Re

thresholds (Golaz et al. 2011, 2013; Suzuki et al. 2013).

The key cause of the problem lies in the cloud-

to-precipitation transition process, represented as

autoconversion parameterization in GCMs. The auto-

conversion rate Raut is generally formulated as a power-

law function of cloud liquid water content Lc and

droplet number concentration Nc, in the form of

Raut }La
c N

b
c (a and b are constants). The formulation

of autoconversion controls the timing and efficiency of

precipitation formation, and hence should be constrained

in order to improve the process-level fidelity of pre-

cipitation formation as well as to curtail AIE uncertainty.

In particular, the value of b is the critical factor in the

formulation since it directly links rain formation to Nc, a

quantity highly depending on aerosol conditions.

Continuous and comprehensive measurements of the

cloud and precipitation microphysical properties from

satellite observations, especially the active detection of

cloud vertical structures from CloudSat (Stephens et al.

2018), provide detailed insights into the cloud systems

on the global scale. These facilitate the investigation of

the precipitation process in the context of varying cloud

properties (e.g., Suzuki et al. 2010; Nakajima et al. 2010;

Takahashi et al. 2017). For instance, it has been dem-

onstrated that the probability density functions (PDFs)

of radar reflectively (RR) rescaled as a function of in-

cloud optical depth (ICOD), which are then further

classified according to cloud-top Re, can effectively fin-

gerprint the microphysical-structure transition from

cloud to rain (Suzuki et al. 2010). This statistic,

termed a contoured frequency by optical depth diagram

(CFODD), has been employed to expose the processes-

level biases in the warm rain formation processes of

various GCMs (Suzuki et al. 2015; Jing et al. 2017).

Although it is well acknowledged that the pre-

cipitation treatments in models have great impacts on

the simulated precipitation and AIE, it is not yet ade-

quately understood how they affect the process-level

behavior of precipitation, and even less is known about

how the process-level behavior of precipitation pro-

pagates to the AIE through its correlation with cloud

microphysics as well as the interplay with aerosols.

Specially, as mentioned above, the autoconversion

process that governs the onset of warm rain is of primary

importance to the characteristics of the precipitation

process. Jing and Suzuki (2018, hereinafter JS18) com-

pared two distinct autoconversion schemes in a single

GCM against satellite observations in their representa-

tions of the warm rain process and revealed that the
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differing autoconversion processes affect AIE through

the varying sensitivities of cloud water response to

aerosol perturbations, which could be amplified through

the wet scavenging feedbacks to the extent depending

on the autoconversion formulations. This study extends

the previous work to include a wide range of auto-

conversion representations in the literature, which will

illustrate whether the findings by JS18 can generally

apply to other autoconversion schemes, and also allows

for more systematic investigation of the key factors in

the autoconversion formulations that determine the

characteristics of warm rain intensity and frequency, and

hence the consequent AIE.

Five widely used autoconversion schemes that employ

largely different functional forms of formulations are

incorporated into a single model here. Our major ob-

jectives are 1) to evaluate the precipitation formation

processes represented by the various autoconversion

schemes in comparison with satellite observations and to

clarify how the differing representations of precipitation

affect their features in the aerosol–cloud interaction,

and 2) to quantify the impacts of the varying auto-

conversion formulations on the AIE from the PI to PD

period and to explore the pathways through which the

differences in the precipitation formation process

propagate to the AIE. Special interest is put on the ef-

fect of varying values of b.

The model and observational data used in this study,

as well as the experimental setups, are described in

section 2. Section 3, utilizing the simulations for the

PD period, evaluates the precipitation formation

processes of the various schemes against satellite ob-

servations. This serves as a basis for analyzing the in-

teraction between precipitation and cloud/aerosols in

terms of the susceptibilities to aerosol environment.

The impacts of the alternating autoconversion

schemes on the AIE are investigated in section 4,

with a particular emphasis on the effect of b and wet

scavenging feedback. Section 5 gives the conclusions

and discussion.

2. Model, data, and experiments

a. Model description

The atmospheric version of the Model for In-

terdisciplinary Research on Climate version 5.2 (MIRO

C5.2) (Watanabe et al. 2010), jointly developed at the At-

mosphere andOceanResearch Institute of theUniversity of

Tokyo, the National Institute for Environmental Studies,

and the Japan Agency for Marine-Earth Science and

Technology, is used in this study. The model has a standard

horizontal resolution of T85 (;1.48) and a vertical resolution
of 40 layers up to about 3hPa.

Full aerosol–cloud interactions are considered by in-

corporating the Spectral Radiation-Transport Model for

Aerosol Species (SPRINTARS) (Takemura et al. 2000,

2002), in which all the main tropospheric aerosol types and

their precursors are included. The wet scavenging rates of

the various aerosol species are parameterized as functions

of precipitation fluxes and aerosolmicrophysical properties

such as number concentration and radius (Takemura et al.

2000), and hence the wet scavenging efficiencies are highly

amenable to precipitation changes. The number concen-

trations of both water droplets (Abdul-Razzak and Ghan

2000) and ice crystals (Takemura et al. 2009) are prognostic

variables in the two-moment bulk microphysics and are

coupled with the radiation and precipitation schemes.

The warm rain formation scheme of the standard

MIROC5.2 is fromBerry (1968). Four alternative schemes

that have been widely used in other models are also in-

corporated into MIROC5.2 (Michibata and Takemura

2015). The formulations of the autoconversion rate Raut

(kgm23 s21) for the five schemes employed in this study

are as follows:

1) Berry (1968):

R
aut

5
3:53 1022L2

c

0:121 1:03 10212
N

c

L
c

, (1)

2) Tripoli and Cotton (1980):

R
aut

5 f
tune

3
0:104gE

cr

mr1/3w

L7/3
c N21/3

c H(q
c
2 q

crit
) , (2)

3) Liu and Daum (2004):

R
aut

5 f
tune

3

�
3

4pr
w

�2

k
2
b6
6L

3
cN

21
c H(R

6
2R

6c
) , (3)

4) Khairoutdinov and Kogan (2000):

R
aut

5 f
tune

3 13503L2:47
c (N

c
3 1026)21:79

r21:47
a , and

(4)

5) Beheng (1994):

R
aut

5 f
tune

3 6:03 1028n21:7(L
c
3 1023)4:7(N

c
3 1026)23:3,

(5)

where the units of Lc and Nc are kgm23 andm23, re-

spectively; ra and rw are the air and water density

(kgm23), respectively; H denotes the Heaviside step

function with a threshold cloud water mixing ratio [Eq.

(2)] or droplet effective radius [Eq. (3)]. Note that ftune
is a tuning factor introduced here to bring the TOA
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energy budget to an amount comparable to the default

BR68 simulation (targeting 60.5Wm22 for the PD

simulations). This tuning approach alters the magnitude

of Raut without changing the functional dependency of

Raut onLc andNc, which cover awide range among these

schemes (the values of a and b in Raut }La
c N

b
c for each

scheme are listed in Table 1). Other parts of the model

are held exactly the same. For convenience, the above

autoconversion schemes [Eqs. (1)–(5)] will be referred

to as BR68, TC80, LD04, KK00, andBH94, respectively.

To facilitate consistent comparisons with satellite

observations, the Cloud Feedback Model Intercom-

parison Project Observation Simulation Package

(COSP) version 2.0 (Swales et al. 2018) is implemented

in MIROC5.2 to translate the model cloud fields into

observation-like signals or retrievals at subcolumns de-

fined within the model grids. Here the number of sub-

columns in each grid point is set to 25. COSP has been

extensively used for model evaluation and intermodel

comparisons (e.g., Lin et al. 2014; Norris et al. 2016;

Tsushima et al. 2017; Kay et al. 2018).

b. Observational data

The observational data for the evaluation of warm

rain formation process are from the CloudSat and Aqua

satellites that are included in the A-Train constellation.

The two satellites pass across a surface footprint within

;1min (Stephens et al. 2008), such that they can provide

near-coincident detections of particular clouds. The

CloudSat 2B-GEOPROF product (Marchand et al.

2008; http://www.cloudsat.cira.colostate.edu) is em-

ployed to provide radar reflectivity profiles within

clouds used as an indicator of hydrometeor particle size.

The Aqua MODIS product (MYD06_L2) (Platnick

et al. 2015; https://ladsweb.modaps.eosdis.nasa.gov)

collocated to the CloudSat footprint provides us with cloud

properties used to separate warm (liquid) and cold (ice)

clouds and to track the evolution of precipitation: cloud-top

temperature Tctop, cloud-topRe, and cloud optical depth tc.

The observations during 2007–10 are used here.

Additional data are employed for the purpose of

evaluating the simulated PD climates. These include the

cloud fraction from the MODIS Aqua and Terra com-

bined cloud product MCD08_M3 intended for model

evaluations (Pincus et al. 2012; http://climserv.ipsl.

polytechnique.fr/cfmip-obs.html); the aerosol optical

depth (AOD) from the Level-3 (L3) MODIS Atmo-

sphere Monthly Global Product MYD08_M3 (Platnick

et al. 2017; https://dx.doi.org/10.5067/MODIS/MYD08_

M3.006); the liquid water path (LWP) from the Multi-

sensor Advanced Climatology of Liquid Water Path

(MAC-LWP) dataset (Elsaesser et al. 2017; https://

disc.gsfc.nasa.gov); the surface precipitation rate from

the Global Precipitation Climatology Project monthly

precipitation dataset (GPCP) (Adler et al. 2003; https://

www.esrl.noaa.gov/psd); and the TOA radiation budgets

(including cloud radiative forcing) from the CERES

EBAF-TOA Ed4.0 product (Loeb et al. 2018; https://

ceres.larc.nasa.gov).

c. Experiments

Two main sets of experiments are performed to ad-

dress the objectives of this study. First, to understand the

process-level behavior of warm rain formation, a 1-yr

simulation under the PD aerosol emissions is conducted

for each autoconversion scheme; the results are saved as

6-hourly snapshots such that the instantaneous cloud

microphysical properties can be used to construct sta-

tistics that are directly comparable to the satellite-based

metric. The RR from the CloudSat cloud profile radar

simulator and the tc from the MODIS simulator, both

embedded in the COSP, are applied to facilitate the

model–satellite comparisons.

Second, in order to assess the impact of the various

autoconversion formulas on the AIE, a pair of 11-yr

simulations under the PI and PD aerosol emissions,

represented by the estimates for the years 1850 and 2000

from the representative concentration pathways dataset

(van Vuuren et al. 2011), respectively, are conducted for

each autoconversion scheme. Prescribed sea surface

temperature (SST) and constant greenhouse gases are

employed. Since all model setups are consistent between

the PI and PD runs except for the aerosol emissions, the

PD 2 PI differences indicate the aerosol-induced

changes to the simulated climate. The comparisons

among the various schemes will imply the role of pre-

cipitation formation process on modulating the simu-

lated PD 2 PI climate changes and AIEs.

The sensitivity of AIE and cloud properties to the

choice of b is tested for each scheme, with an artificially

altered value of b. The newly designated values of b are

listed in Table 1. The choice of these values is meant to

cover the multischeme range of b as much as possible

without a breakdown of the run. We also examined the

effect of using a Re threshold on AIE for the LD04

scheme. These tests are also run for 11 model years

under the PD and PI aerosol conditions.

TABLE 1. The values of a and b in the autoconversion formu-

lationRaut }La
c N

b
c for each scheme; b* are artificially varied values

of b designated for AIE sensitivity tests.

BR68 TC80 LD04 KK00 BH94

a ;3 7/3 3 2.47 4.7

b ;21 21/3 21 21.79 23.3

b* ;21.2 22/3 21/3 21/3 21/3
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In addition, the climate sensitivity l [K (Wm22)21]—

that is, the response of global-mean surface temperature

to unit radiative forcing at the TOA—is calculated for

each of the various model constructions, such that it is

straightforward to translate the above AIEs into possi-

ble changes in global-mean surface temperature from PI

to PD. It has been shown in previous studies that AIE is

equally efficient in altering surface temperature com-

pared toCO2 forcing (Hansen et al. 2005), but the effi-

cacy may vary with climate state. Two 6-yr simulations

are conducted with the SST universally increased and

decreased by 2K based on the climatological July SST

data, respectively; and l is calculated from l 5 DT/DF
(Cess et al. 1990), where DT and DF are the differences

in the global-mean TOA net radiation flux and surface

temperature, respectively, between the two simulations.

We also make further investigation to the impacts of

the wet scavenging feedback on AIE for the five auto-

conversion schemes. JS18 has found that the changes in

the precipitation formation process result in differences

in the efficiency ofwet scavenging,which in turn feedback

on cloud microphysics and precipitation. This study

extends this analysis into the various autoconversion

schemes for more systematic estimates of this contribu-

tion from the wet scavenging. An extra pair of PI and PD

simulations for each scheme are conducted, in which an

additional precipitation flux especially for the wet scav-

enging process is calculated with fixed Nc, while the pre-

cipitation flux calculated using aerosol-mediated Nc

remains for the cloud–precipitation interaction. Since Nc

is the pathway through which aerosols can affect pre-

cipitation, this treatment turns off the connection be-

tween the aerosol-mediated precipitation and the wet

scavenging process, thereby removing the feedback on

AIE from the wet scavenging. The fixed Nc is set to the

intermediate value 3.0 3 107m23; the use of different

values typical in the model’s Nc spectrum can affect the

specific values of the AIEs, but not the main conclusions

about the relative importance of wet scavenging feedback

in modulating AIE (JS18).

3. PD warm rain formation processes

a. PD climate states

Before examining the process-level behaviors of the

warm rain formation processes, we first compare the PD

climate states by using the various autoconversion

schemes. Figure 1 shows the multiyear zonal means of

the variables about the clouds, aerosols, precipitation,

and energy budget from the PD simulations, as well as from

the corresponding observations. The global-mean values of

both thePDandPI simulations, aswell as the comparison to

available observations, are shown in Table 2.

In general, the simulated climate states, especially the

surface precipitation rate P (Fig. 1c) and the TOA ra-

diative fluxes (Figs. 1e–h), are very close to each other;

the interscheme differences are much smaller than those

between the model simulations and observations. This is

because the prescribed climatological SST limits the

variation in mean climate between the simulations. The

most notable variations among the model simulations

occur for LWP (Fig. 1b) and AOD (Fig. 1d); the BR68

and TC80 schemes feature relatively smaller LWP and

AOD than do the other schemes. The global-mean dif-

ferences in LWP and AOD among the various schemes

are 17 gm22 (;30%) and 0.019 (;19%), respectively.

These variations in LWP and AOD reflect the impacts

of the autoconversion formulations on the depletion of

cloud water and wet scavenging of aerosols by pre-

cipitation, which will be examined in detail in the fol-

lowing subsections. The considerable differences in

LWP cause only moderate differences in cloud radiative

forcing (Figs. 1e,f), within 1Wm22 in terms of the global

mean; this is because the schemes with larger LWP also

have smaller cloud fraction, which compensate for part

of the radiative effects of the thickened clouds.

Figure 1 and Table 2 suggest that most variables in the

PD simulations are analogous to each other among the

various schemes, except for the properties of clouds and

aerosols (e.g., LWP and AOD), which are directly

modulated by the different autoconversion formula-

tions. Therefore, the abilities of the model to reproduce

the present-day climate states do not change notably by

altering the autoconversion process.

b. Warm rain formation process

The aforementioned CFODD method is applied to as-

sess the characteristics of the warm rain formation pro-

cesses in comparison with the A-Train observations. The

PDFs of RR (classified into 25 bins ranging from 230 to

20 dBZ) are computed and normalized at each ICOD bin

(15 bins are used here from 0 to 60) for each of the three

cloud-top Re ranges (Re 5 5–10, 10–15 and 15–20mm, re-

spectively), for single-layer warm clouds only (Tctop .
273.15K), and then displayed in the form of contoured

frequency diagrams. For observations, the vertical profiles

of ICOD are determined from the MODIS tc with an

adiabatic growth assumption algorithm (Suzuki et al.

2010). For models, the RRs are from the CloudSat simu-

lator (Haynes et al. 2007) involved in COSP, and the

ICODprofiles are computed using the tc from theMODIS

simulator and the same adiabatic growth algorithm.

Figure 2 shows that the observed RR shifts mono-

tonically from small (RR , 215 dBZ; Fig. 2a) to

larger values (RR. 0 dBZ; Fig. 2c) with increasing Re

at the lower parts (ICOD . 40) of the diagrams.
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FIG. 1. Zonal means of multiyear averaged (a) cloud fraction, (b) liquid water path (LWP),

(c) surface precipitation rate P, (d) aerosol optical depth (AOD), (e) longwave cloud radi-

ative forcing (LWCF), (f) shortwave cloud radiative forcing (SWCF), (g) net longwave flux

FLW, and (h) net shortwave flux FSW at the top of the atmosphere for the MIROC5.2 PD

simulations and corresponding observations (see the text).
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FIG. 2. Normalized probability distribution function of radar reflectivity as a

functionof ICOD(i.e.,CFODD) for (a)–(c) theA-Trainobservations and (d)–(r) the

MIROC5.2 simulations with various autoconversion schemes. The numbers of bins

for the ICOD and reflectivity are 15 and 25, respectively.
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Clouds with Re 5 10–15 mm feature intermediate RR

(215 dBZ , RR, 0 dBZ). Note that clouds with RR

,215 dBZ,215 dBZ,RR, 0 dBZ, and RR.0 dBZ

are conventionally regarded as containing non-

precipitating, drizzling (i.e., light rain), and raining

(i.e., heavy rain) hydrometeors, respectively (e.g., Haynes

et al. 2009). Thus, Figs. 2a–c suggest that precipitation onset

is triggered in the Re range of 10–15mm, which is also

supported by in situ observations (Boers et al. 1998;

Pawlowska and Brenguier 2003). If cloud particle sizes are

sufficiently small (Re , 10mm; Fig. 1a), precipitation is

rarely observed even though the cloud optical depth can

reach a considerable magnitude. The satellite-based statis-

tics of Figs. 2a–c thus illustrates how the vertical micro-

physical structure of warm clouds tends to transition from

nonprecipitating to precipitating profiles as a fairly mono-

tonic function of the cloud-top particle size.

The transitions of RR profiles with increasing Re

differ greatly among the model simulations with dif-

ferent autoconversion schemes. The results with the

BR68 (Figs. 2d–f) and TC80 (Figs. 2g–i) schemes show

virtually no nonprecipitating profiles, even for the

smallest Re range, suggesting that rain is formed quite

efficiently even when cloud droplet sizes are too small

to sustain such an efficient collision and coalescence

growth of droplets. Compared with BR68 and TC80,

the statistics for Re 5 5–10mm from the LD04, KK00,

and BH94 schemes feature much smaller RR, espe-

cially for BH94 (Fig. 2p) which shows the CFODD

characteristics most analogous to the A-Train results.

These indicate that the cloud-to-precipitation transi-

tions are significantly inefficient in clouds with small

droplet sizes for the latter three schemes; such impeded

rain formations can be in the polluted regions where

the abundant aerosols decrease cloud droplet sizes. It is

noticed that there is a somewhat abrupt separation

between the nonprecipitating and precipitating pro-

files for LD04 (Fig. 2j); this stems from the step

function dependency of precipitation with a threshold

Re that varies with meteorological conditions. TC80

also adopts a step function representation to trigger

precipitation, but the threshold cloud water mixing

ratio it employs does not manifest in the Re-based

CFODD diagrams (Figs. 2g–i). For KK00, although

the RR values for the smallest Re range (Fig. 2m) are

much smaller than the corresponding BR68 and TC80

results, they are slightly larger than the A-Train ob-

servations, implying that drizzle formation is still

overestimated in this Re range under the KK00

scheme. For Re 5 10–15mm and Re 5 15–20mm, all

schemes overestimate the RR at smaller ICOD (the

upper parts of the CFODD diagrams), suggesting that

the occurrence of precipitation is too often in clouds

with small optical depth (in optically thin clouds or

near the cloud top).

Another way to look at the precipitation formation

process is the grid-based occurrence frequencies of

nonprecipitating, drizzling, and raining clouds (Suzuki

et al. 2011; Jing et al. 2017; Kay et al. 2018). The afore-

mentioned criteria (RR,215 dBZ,215 dBZ,RR,
0 dBZ, and RR . 0 dBZ) are used to identify non-

precipitating, drizzling, and raining subcolumns, re-

spectively, and the occurrence frequencies of these

categories at each grid point are defined as fi 5 Ni/Nnot

(Ntot is the total number of cloudy subcolumns; Ni is

the number of nonprecipitating/drizzling/raining sub-

columns). For satellite observations, this is done by

simply counting the originally detected pixels in the grid

resolution same as the model. The resultant global dis-

tributions of the fractional occurrences are shown in

Fig. 3 for both the observations and the model simula-

tions. Note that, for the model results, all subcolumns

will be precipitating if there is precipitation occurring

in a grid point since there is no information of subgrid

precipitation fraction; this is inconsistent with the situ-

ation of the A-Train observations in which both pre-

cipitating and nonprecipitating pixels can exist within a

grid point. To account for this inconsistency, a ‘‘grid-

scale’’ (GS) calculation of the occurrence frequencies is

conducted for ‘‘upscaling’’ the observations to the

model grid scale—the satellite tracks are latitudinally

divided into 1.48-long segments (each equivalent to a

model grid) that are each identified as nonprecipitating,

drizzling, or raining according to the maximum RR oc-

curring within the segment (Figs. 3d–f), and counted

over time.

The original A-Train data (Figs. 3a–c) show that the

majority of the warm clouds are nonprecipitating over

broad regions, especially over the continental regions

such as East and South Asia, North and South America,

Europe, and central Africa, and also over subtropical

eastern oceans and midlatitude oceans. Raining warm

clouds are more frequently seen over the intertropical

convergence zone (ITCZ) (Fig. 3c). The geographical

characteristics mostly remains in the grid scale statistics

(Figs. 3d,e), except that the magnitudes of the raining-

cloud occurrence frequency are increased whereas those

of the nonraining clouds are reduced. The global-mean

occurrence frequencies of nonprecipitating/drizzling/

raining clouds for the original (GS) statistics are 0.53,

0.31, and 0.16 (0.33, 0.31, and 0.36), respectively.

There are remarkable differences among the results of

the various autoconversion schemes. Nonprecipitating

clouds under the BR68 (Fig. 3g) and TC80 (Fig. 3j)

schemes are rarely seen, as has been indicated from the

CFODD analysis above. Nonprecipitating clouds under
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FIG. 3. Distributions of the occurrence frequencies of (left) nonprecipitating clouds (230 , RR , 215), (center) drizzling clouds

(215 , RR , 0), and (right) raining clouds (RR . 0), defined as Ni/Nnot (Ntot is the total number of cloudy subcolumns; Ni is the

number of nonprecipitating/drizzling/raining subcolumns). From top to bottom are the results for the A-Train, A-Train(GS), and

MIROC5.2 simulations with the BR68, TC80, LD04, KK00, and BH94 autoconversion schemes, respectively. The satellite statistics are

derived on the same grid resolution as those of the model simulations.
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the LD04 (Fig. 3m), KK00 (Fig. 3p), and BH94 (Fig. 3s)

schemes occur much more frequently than BR68 and

TC80 over the continental regions influenced by an-

thropogenic aerosol loadings, but are still under-

estimated against satellite statistics over the midlatitude

and subtropical oceans to differing extents.

The probability of precipitation in clouds has been

shown to be a good indicator of the strength of AIE due

to its close correlation with the susceptibility of cloud

water to aerosol perturbations (Wang et al. 2012; Bai

et al. 2018). Therefore, the occurrence frequencies of

nonprecipitating and precipitating clouds shown in

Fig. 3 hint at the autoconversion-induced variations in

the sensitivity of the warm rain formation process to the

aerosol environment, which is assessed in the following

subsection.

c. Microphysical susceptibility to aerosol
environment

We apply the widely used ‘‘susceptibility’’ approach

(Jiang et al. 2010;Wang et al. 2012;Michibata et al. 2016;

Ma et al. 2018) to depict the sensitivity of the pre-

cipitation formation process to the aerosol environment.

The aerosol mediatedNc, which reflects the variations in

aerosol loadings and also retrievable from satellite re-

mote sensing (Grosvenor et al. 2018), has been widely

used in the aforementioned susceptibility assessments.

In light of this, we will focus on the susceptibility toNc in

the following analyses.

The susceptibilities of autoconversion rate Raut, ac-

cretion rate Racc, and surface precipitation rate P to Nc

are defined respectively as follows:

S
aut

52dln(R
aut
)/dln(N

c
)j
LWP

, (6)

S
acc

52dln(R
acc
)/dln(N

c
)j
LWP

, and (7)

S
p
52dln(P)/dln(N

c
)j
LWP

. (8)

With the negative sign in the equations, the phys-

ical meaning of the susceptibilities is how efficiently

the autoconversion/accretion/surface precipitation is

inhibited by increasing aerosols. Figure 4 shows the

terms Saut, Sacc, and SP as a function of LWP for the

various schemes, derived from the 1-yr snapshot out-

puts of the PD simulations. Each number in the figure

is based on at least 45 000 valid grid points. The LWP

bin boundaries increase geometrically by 10% from

10 to 1291 gm22. The small LWP bins used here could

somewhat limit the effects from the other factors such

as meteorological conditions. Figure 4a shows that

the differences in Saut among the various schemes are

small for LWP , ;100 gm22 and enlarge with in-

creasing LWP. The Saut values for BR68 and TC80

are mostly smaller than the other schemes, and vary

only slightly with increasing LWP. In contrast, the

LD04, KK00, and BH94 schemes generally show a

monotonically increasing Saut with increasing LWP.

This behavior can be understood from the auto-

conversion formulations that are generally written as

Raut }La
c N

b
c . Substituting this into Eq. (6), Saut is

found to be approximately equal to 2b for a single

layer cloud. We interpret that this control of b on Saut
is also manifested in the global, multilayer results of

Fig. 4a: the Saut values at larger LWPs reach ap-

proximately 0.3, 0.4, 1.2, 1.6, and 2.5 for the TC80,

BR68, LD04, KK00, and BH94 schemes, respec-

tively, consistent with the corresponding values of2b

for these schemes (1/3, ;1.0, 1.0, 1.79, and 3.3,

respectively).

FIG. 4. Susceptibilities of (a) autoconversion rate, (b) accretion rate, and (c) surface precipitation rate to cloud number concentration as

a function of LWP for different autoconversion schemes. Also shown are the sample size- and LWP-weighted global-mean values, which

are colored as those of the corresponding lines.
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Although the accretion formulation is set to be com-

mon among the variousmodel configurations, Sacc is also

shown here (Fig. 4b) to investigate how Racc is influ-

enced by the autoconversion process. It can be seen that

Sacc exhibits somewhat similar features to Saut: the

values of Sacc for the LD04, KK00, and BH94 schemes

increase rapidly with increasing LWP and are mostly

larger than those of the BR68 and TC80 schemes. These

suggest that the autoconversion parameterizations influ-

ence Sacc indirectly and significantly through responses of

cloud and rainwaters to autoconversion. It is noted that

the LD04 scheme shows small Saut dependence on LWP,

but much larger Sacc dependence on LWP. This is possi-

bly related to the fact that autoconversion works in-

dependently at each model layer, whereas accretion is

highly associated with the precipitation flux which is

vertically accumulated; therefore, the vertical layout of

autoconversion (i.e., at which level and at what efficiency

the autoconversion is triggered) can also modify the ap-

parent accretion rate. For instance, for a given cloud

profile, shifting the triggering of autoconversion to higher

levels will expose more cloud water below to the path of

rain drops, leaving the LWP to be more important for

accretion than for autoconversion.

Negative values of Sacc occur at small LWPs for all

schemes, and also prevail at LWP.;500 gm22 for the

BR68 and TC80 schemes. The negative values of Sacc
suggest that the accretion process can be enhanced

with increasing aerosols under certain conditions, re-

gardless of the inhibited autoconversion. One possible

explanation for the negative Sacc is that the initial in-

hibition of autoconversion-based rain formation could

result in an increased cloud water carried over to the

following time steps, which may outweigh the

autoconversion-induced decrease of the rainwater,

leading to an enhanced Racc. This explanation is sup-

ported by an additional investigation which shows that

the LWP taken to the next step becomes larger with

increasing cloud number concentrations (see Fig. S1 in

the online supplemental material). Another possibility is

that the shift of the onset of autoconversion upward by

adding aerosols, implied by elevated precipitation top

height with increasing cloud droplet number concentra-

tion (CDNC) (Fig. S2), especially when there is less cloud

water (i.e., small LWP) to support droplet collision at

cloud base, acts to intensify the final accretion rate.

The surface precipitation’s susceptibilities to aerosols

SP (Fig. 4c) are the joint result from Saut and Sacc. The

increasing tendency of SPwith increasing LWP aswell as

the magnitude of SP for LD04, KK00, and BH94 are

similar to the results obtained from satellite observa-

tions (Sorooshian et al. 2009) and fine-resolution model

simulations (Feingold et al. 2013), and therefore deemed

more realistic. It is also worth noting that the SP be-

haviors for the BR68 and TC80 schemes closely re-

semble the corresponding behaviors of Sacc, suggesting

that Racc dominates in determining the simulated sur-

face precipitation behavior for these two schemes.

The differences in the precipitation formation process

can also affect the wet scavenging efficiencies, and hence

the aerosol lifetime (e.g., Textor et al. 2006), in varying

aerosol environments. Here, we define the wet scav-

enging efficiency Rwscv as the fraction of aerosols re-

moved from the column aerosol loading by wet

scavenging per unit time:Rwscv5Awscv/qtot, whereAwscv

and qtot are the wet scavenging flux (kgm22 s21) and

total aerosol loading (kgm22) in a grid point, re-

spectively. Analogous to Eqs. (6)–(8), we define the

susceptibility of Rwscv to aerosol perturbations as

S
wscv

52dln(R
wscv

)/dln(N
c
)j
LWP

. (9)

A positive Swscv indicates that the aerosol removal

capability is impeded by increasing aerosols, and vice

FIG. 5. As in Fig. 4, but for the susceptibilities of aerosol wet scavenging ratio for (a) sulfate, (b) black carbon, and (c) organic carbon.
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versa. Figures 5a–c show, respectively, the Swscv for the

three anthropogenic aerosol species: sulfate (SF), black

carbon (BC), and organic carbon (OC). Large de-

viations are found among the schemes. BR68 and TC80

mostly show negative Swscv although the values become

less negative with increasing LWP, while the Swscv for

LD04, KK00, and BH94 increase rapidly with LWP and

are positive for a moderately large LWP (.;200 gm22

for SF and.;400 gm22 for BC and OC). These suggest

that, for the latter schemes, increasing aerosols in the

atmosphere could impede the Rwscv especially when

there is an adequate amount of cloud water, leaving

more aerosols remaining in the atmosphere. The nega-

tive Swscv is probably due to the negative Sacc, which

enhances subcloud wet scavenging.

These differences in Swscv also protrude in the differ-

ences in the AODs of the PD simulations (Fig. 1d and

Table 2), in which the schemes with larger (more posi-

tive) Swscv also have larger AODs, highlighting the

mutual coupling between aerosol and cloud through rain

formation and wet scavenging.

4. PD 2 PI aerosol indirect effect

The analyses above suggest that the various auto-

conversion schemes can yield analogous PD climate

states, but with quite different process-level pre-

cipitation behaviors and microphysical susceptibilities

to aerosols. In this section, we explore how these dif-

ferences affect the AIE due to perturbed aerosol emis-

sions from the PI to the PD scenarios.

a. AIE

The method of Ghan (2013) is used to diagnose AIE.

It is calculated as AIE 5 D(Fclean 2 Fclear,clean). Here,

Fclean and Fclear,clean are the aerosol-free (calculated by

neglecting AOD) all-sky and clear-sky radiative fluxes

at the TOA, respectively, and D means the PD 2 PI

FIG. 6. Global distributions of the AIE from the MIROC5.2 simulations with the (a) BR68, (b) TC80, (c) LD04,

(d) KK00, and (e) BH94 autoconversion schemes.
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difference. All the fluxes are calculated online by the

radiative transfer module. The geographical distribu-

tions of AIEs (Fig. 6) show that the AIEs are commonly

negative over most regions, particularly over the anthro-

pogenic aerosol source regions over land (e.g., East Asia,

central Africa, Europe, and North America) and the

surrounding oceans. However, the magnitudes of the

AIEsdiffer greatly especially over the source regions, with

global-mean values ranging from 20.85 to 24.34Wm22.

Themagnitude and geographical distribution andAIEare

highly governed by the regional responses of cloud

properties, specifically the increase in LWP and CDNC

(Figs. 7 and 8, respectively). Quantitatively, the global-

mean DLWP and DCDNC differ by a factor of as large as

about 38 (from ;0.2 to ;7.7 gm22) and 3 (from 0.19 3
1011 to 0.65 3 1011m22), respectively.

The global-mean AIEs are also summarized in

Fig. 9 (colored fill), in comparison to the expert

judgement in Intergovernmental Panel on Climate

Change Fifth Assessment Report (IPCC AR5; Myhre

et al. 2013; gray solid fill). The BR68 and TC80 schemes

give AIEs within the uncertainty range of the IPCC

AR5 judgement while other schemes give too large

(negative) AIEs to the extents that are close to (LD04

and KK00) or much larger than (BH94) the effective

radiative forcing caused by greenhouse warming for

the period 1750–2011 [3.00 (2.22–3.78) Wm22] (Myhre

et al. 2013), and thus appear to be implausible in the

context of explaining historical temperature trend. The

standard version of SPRINTARS with the BR68 au-

toconversion has been found to feature much smaller

cloud water response to increasing aerosols than most

other models (Ghan et al. 2016); both the previous and

this study suggest that the shift to less efficient auto-

conversion schemes can intensify the cloud water–

aerosol connection.

To approximately estimate the historical temperature

response to the AIEs thus inferred, we calculate the cli-

mate sensitivities l with the Cess et al. (1990) approach

(see section 2c) (Fig. 10). The l values are close to each

FIG. 7. As in Fig. 6, but for the PD 2 PI differences in LWP (DLWP).
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other, with a range [0.45–0.49K (Wm22)21] much

smaller than those of varying convection schemes in the

GFDL AM4 model (Zhao et al. 2016). Given the DF
(AIE) in Fig. 9 and l in Fig. 10, we obtain the aerosol-

induced change to the surface air temperatureDT fromPI

to PD using DT 5 l 3 DF for each scheme as 20.498C
(BR68), 20.388C (TC80), 21.218C (LD04), 21.408C
(KK00), and 22.068C (BH94). The observed trend of

surface air temperature showed a global-mean warming

of 0.858C (0.658–1.068C) from 1880 to 2012 (Hartmann

et al. 2013). Therefore, it is highly probable that the use of

the LD04, KK00, and BH94 schemes in full PI-to-PD sim-

ulations (with a coupled ocean model) will not capture the

warming trend in the past century due to the too-negative

AIEs, even though they capture the rain formation process

much better than the BR68 and TC80 schemes (Fig. 2).

Similar results (i.e., better rain formation but worse histor-

ical temperature evolution) have also been found in the

GFDL CM3 model (Golaz et al. 2013; Suzuki et al. 2013).

Comparing the precipitation formation processes as

illustrated in Fig. 2 and the magnitudes of AIEs, it is

found that the CFODD diagrams are not only a good

indicator of the precipitation formation process, but

also a fairly good indicator of the intensity of the

aerosol–cloud interaction—the more robust non-

precipitating RR profiles occur in the smallRe range, the

more extensively aerosols and clouds interact, and thus

larger AIE is generated. Therefore, the precipitation

formation process plays a crucial role in determining the

strength of AIE in the MIROC5.2 model.

b. Effect of b

It has been demonstrated in section 3 that the pa-

rameter b used in the autoconversion formulations

manifest itself in Saut. To understand the effect of b on

AIE, we artificially alter the value ofb (Table 1) for each

scheme and conduct additional PD and PI simulations.

Figure 11 shows the AIE, DLWP, and DCDNC as a

function of b for each scheme (colored lines). In general,

for a particular scheme, the use of smaller b always leads

to smaller AIE, due to smaller DLWP and DCDNC. The

interscheme variation in AIE when2b# 1 (Fig. 11a) is

FIG. 8. As in Fig. 6, but for the PD 2 PI differences in CDNC (DCDNC).
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relatively small, mostly within the uncertainty range of

the IPCC AR5 judgement. Both DLWP (Fig. 11b) and

DCDNC (Fig. 11c) are substantially suppressed for

KK00 and BH94 when a small b is used. One exception

is LD04, which gives anAIE as large as;1.9Wm22 with

b 5 21/3. One major difference between the LD04

scheme and others is the use of aRe threshold that varies

withLc andNc. If theRe threshold is eliminated from the

default LD04 formulation, it yields the AIE (with

b521) much closer to BR68 which also has b5;21,

implying that the appropriate use of warm rain onset

threshold can mitigate the effect of the b used.

The BR68 and TC80 schemes both show a relatively

larger AIE sensitivity to the increase of b (more nega-

tive): a small increase in b (BR68: from ;21 to ;21.2,

TC80: from 21/3 to 22/3) takes the magnitudes of AIE

comparable to those of the schemes with larger b. These

are largely related to the high sensitivity of DCDNC to

b of the two schemes (Fig. 11c).

These results suggest that b, which largely determines

the susceptibility of warm rain formation to aerosol

perturbations in the first place, significantly influences

the AIE via its modulation to cloud property responses.

Meanwhile, the choice of rain onset threshold can po-

tentially mitigate the effect of b.

c. Effect of wet scavenging feedback

This subsection extends the exploration of the wet

scavenging feedback on AIE found by JS18 to multiple

autoconversion schemes. The discrepancies in Swscv as

shown in Fig. 5 result in significantly different PD 2 PI

AOD differences (DAOD; Fig. 12) among the various

autoconversion schemes. These differences inDAOD feed

back onto and contribute partly to cloud water (Figs. 7 and

8) and AIE (Fig. 6): larger aerosol loadings provide extra

cloud condensation nuclei (CCN), which further inhibit

rain formation and enlarge DLWP, DCDNC, andAIE. As

described in section 2c, the experiments of ‘‘fixed Nc for

wet scavenging 1 interactive Nc for cloud microphysics’’

are conducted to estimate the contribution of the wet

scavenging feedback onto DLWP and AIE.

The resultant global-mean AIEs that exclude wet

scavenging feedbacks are shown in Fig. 9 (grid fill);

similarly, the global-meanDLWP andDAODare shown

in Fig. 13. The AIEs for the fixed-Nc experiments (de-

noted as ‘‘_FN’’) are all smaller than the corresponding

default experiments, implying that the amplification

effect of wet scavenging feedback pointed out by JS18

applies to all the autoconversion schemes examined.

BH94 shows the largest differences in AIE between the

default and the fixed-Nc experiments, while TC80 shows

the smallest; this is also consistent with the finding of

JS18 that schemes that represent both nonprecipitating

and precipitating RR profiles in CFODDs (e.g., BH94,

KK00, and LD04; Fig. 2) closer to satellite observations

tend to have larger wet scavenging feedback. The

scheme-dependent importance of wet scavenging feed-

back is also clearly shown in Fig. 13: the DLWPs and

DAOD values for the BH94_FN, KK00_FN, and LD04_

FN experiments are generally reduced from their de-

fault experiments to an extent larger than the other two

schemes. The wet scavenging feedback is thus a critical

pathway through which the precipitation schemes can

influence the simulated Earth energy budget, particu-

larly for those that feature impeded (observation-like)

rain formation at small droplet sizes.

FIG. 9. Global-mean PD2 PI differences in AIE for the default

(colored solid fill) and the fixedNC (grid fill) simulations, as well as

for expert judgement of IPCC AR5 (gray solid fill). The error bars

indicate the maximum and minimum annual mean values during

the 11-yr simulations and the uncertainty range of IPCC AR5

judgment.

FIG. 10. Climate sensitivities of the MIROC5.2 model with the

various autoconversion schemes derived with the method of Cess

et al. (1990). The error bars indicate the maximum and minimum

annual mean values during the 6-yr runs.
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To summarize, Fig. 14 demonstrates the key role of

process-level behavior of precipitation in modulating

the liquid water and aerosol loading responses to emis-

sion perturbations, and hence the AIE. For a given

amount of increase in aerosol emissions (i.e., from PI to

PD), schemes with larger SP, which is controlled largely

by the form of the autoconversion formulation (i.e., the

value of b and the threshold setup), tend to yield larger

FIG. 11. The (a) AIE and PD2 PI differences in (b) LWP and (c) CDNC simulated by the five autoconversion schemes, each with its

default and a designated value of b. The error bars indicate the maximum andminimum annual mean values. The stars show the results of

LD04 without using the Re threshold.

FIG. 12. As in Fig. 6, but for the PD 2 PI differences in AOD (DAOD).
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LWP responses and also larger AOD increases; the

latter interplays with and contributes to the former

through the positive feedback involving rain formation

and wet scavenging. These jointly result in more pro-

nounced AIEs for schemes with larger SP.

5. Conclusions and discussion

Precipitation parameterizations are a key source of

uncertainties in climate simulations. Many studies have

been endeavoring to constrain the precipitation forma-

tion process with observations. A common bias has been

identified in many state-of-the-art GCMs: precipitation,

especially in the form of warm rains, is triggered more

frequently than revealed from observations. In this study,

five different autoconversion schemes were implemented

into a single GCM to systematically investigate the im-

pact of the autoconversion formulations on the process-

level behavior of warm rain formation in comparisonwith

the A-Train observations, and to examine their effects on

the simulated PI-to-PD AIE.

It was found that the too-frequent warm rain bias was

mitigated by some schemes due to the inhibited rain for-

mation under conditions of small droplet sizes such as in

polluted regions, consistent with satellite observations.

These better representations of warm rain formation were

associated with the formulations of autoconversion, partic-

ularly the power-law dependence upon Nc (i.e., the b in

Raut }La
c N

b
c ). Specifically, the use of larger (more negative)

b was found to exert larger precipitation susceptibilities to

aerosol perturbations, which led to more nonprecipitating

clouds in aerosol-rich environments. In contrast, schemes

with smaller (less negative) b tended to feature much

smaller precipitation susceptibilities to aerosols and severely

overestimated warm rain occurrence frequencies. The ap-

propriate use of rain onset threshold can mitigate the effect

of b. These process-level discrepancies played a crucial role

in modulating the simulated AIEs from the PI to the PD

FIG. 13. As in Fig. 9, but for (a) DLWP and (b) DAOD.

FIG. 14. The relationship between the mean surface precipitation susceptibilities SP weighted with available cloud water amount (bin

width 3 probability for each LWP bin) over the LWP bins and the (a) DLWP, (b) DAOD, and (c) AIE. The error bars indicate the

maximum and minimum annual mean values during the 11-yr simulations.

4426 JOURNAL OF CL IMATE VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/04/22 04:52 PM UTC



periods: schemes that are inclined to significantly inhibit rain

formation with increasing aerosols showed much larger

AIEs than did the ones that hardly inhibited rain formation.

The plausible improvements in the warm rain for-

mation process (i.e., inhibited rain formation) caused

too large (negative) AIEs that could cancel much of the

warming trend since the beginning of industrial era.

That is, the bottom-up constraint on the precipitation

formation process acts contrary to the top-down energy

budget requirement for AIE, implying that compensat-

ing errors exist between the precipitation process and

other parts of the model, such as the wet scavenging

process (Garrett et al. 2006; Bourgeois and Bey 2011;

Ohata et al. 2016), that require more targeted in-

vestigations and constraints.

It is worth noting that satellite-based constraints on

model microphysics suffer from uncertainties, origi-

nating from the measurement and retrieval errors and

limitations inherent in observational data (Ma et al.

2018) and also the scale disparity between observation

and model resolutions (Feingold et al. 2016). Even

though the use of COSP can limit the above un-

certainties to the largest extent, the subgrid assump-

tions applied in COSP are not free from problems

(Song et al. 2018). With these considerations, the top-

down emergent constraints on AIE that seek robust

and observable patterns of aerosol–cloud relationship

on a larger scale (Klein and Hall 2015) may provide

complementary information for model evaluation. In a

particular model analyzed here, the bottom-up and

top-down constraints may be combined primarily over

regions with the largest AIEs: first, the anthropogenic

source regions over land, where precipitation is very

likely associated with ice- or mixed-phase clouds

(Mülmenstädt et al. 2015), and second, the surrounding

oceans where thinner marine stratocumulus prevails

(Bulatovic et al. 2019).
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